Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 2101-2107, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981192

RESUMO

Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.


Assuntos
Biologia Sintética , Carbono , Engenharia Metabólica
2.
Chinese Journal of Biotechnology ; (12): 807-841, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970408

RESUMO

This article summarizes the reviews and original research papers published in Chinese Journaol of Biotechnology in the area of biomanufacturing driven by engineered organisms in the year of 2022. The enabling technologies including DNA sequencing, DNA synthesis, and DNA editing as well as regulation of gene expression and in silico cell modeling were highlighted. This was followed by discussing the biomanufacturing of biocatalytics products, amino acids and its derivatives, organic acids, natural products, antibiotics and active peptides, functional polysaccharides, and functional proteins. Lastly, the technologies for utilizing C1 compounds and biomass as well as synthetic microbial consortia were discussed. The aim of this article was to help the readers to gain insights into this rapidly developing field from the journal point of view.


Assuntos
Biotecnologia , Consórcios Microbianos , DNA , Produtos Biológicos , Publicações , Biologia Sintética
3.
Chinese Journal of Biotechnology ; (12): 1267-1294, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927780

RESUMO

This article summarized the reviews and research articles published in Chinese Journal of Biotechnology in the field of biomanufacturing in 2021. The article covered major chassis cells such as Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, filamentous fungi, non-model bacteria and non-conventional yeasts. Moreover, this article summarized the advances in the production of amino acids, organic acids, vitamins, higher alcohols, natural compounds (terpenoids, flavonoids, alkaloids), antibiotics, enzymes and enzyme-catalyzed products, biopolymers, as well as the utilization of biomass and one-carbon materials. The key technologies used in the construction of cell factories, such as regulation, evolution, and high-throughput screening, were also included. This article may help the readers better understand the R & D trend in biomanufacturing driven by engineered microbes.


Assuntos
Biomassa , Biotecnologia , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética
4.
Chinese Journal of Biotechnology ; (12): 632-649, 2022.
Artigo em Chinês | WPRIM | ID: wpr-927733

RESUMO

The redox biosynthesis system has important applications in green biomanufacturing of chiral compounds. Formate dehydrogenase (FDH) catalyzes the oxidation of formate into carbon dioxide, which is associated with the reduction of NAD(P)+ into NAD(P)H. Due to this property, FDH is used as a crucial enzyme in the redox biosynthesis system for cofactor regeneration. Nevertheless, the application of natural FDH in industrial production is hampered by low catalytic efficiency, poor stability, and inefficient coenzyme utilization. This review summarized the structural characteristics and catalytic mechanism of FDH, as well as the advances in protein engineering of FDHs toward improved enzyme activity, catalytic efficiency, stability and coenzyme preference. The applications of using FDH as a coenzyme regeneration system for green biomanufacturing of chiral compounds were summarized.


Assuntos
Catálise , Coenzimas/metabolismo , Formiato Desidrogenases/metabolismo , NAD/metabolismo , Engenharia de Proteínas
5.
Chinese Journal of Biotechnology ; (12): 1471-1476, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878649

RESUMO

Metabolic engineering is the use of recombinant DNA technology, synthetic biology and genome editing to modify the cellular networks including metabolic, gene regulatory, and signaling networks of an organism. It can achieve the desirable goals such as enhanced production of metabolites, and improve the capability of biomanufacturing pharmaceuticals, biofuels and biochemicals as well as other biotechnology products. In order to comprehend the status of metabolic engineering in past 30 years, we published this special issue to review the progress and trends of metabolic engineering from the four aspects of overall development, key technologies, host engineering and product engineering, respectively, for laying the foundation for the further development of metabolic engineering.


Assuntos
Aniversários e Eventos Especiais , Biocombustíveis , Biotecnologia , Engenharia Metabólica , Biologia Sintética
6.
Chinese Journal of Biotechnology ; (12): 1004-1016, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878610

RESUMO

Currently, biomanufacturing technology and industry are receiving worldwide attention. However, there are still great challenges on bioprocess optimization and scale-up, including: lacing the process detection methods, which makes it difficult to meet the requirement of monitoring of key indicators and parameters; poor understanding of cell metabolism, which arouses problems to rationally achieve process optimization and regulation; the reactor environment is very different across the scales, resulting in low efficiency of stepwise scale-up. Considering the above key issues that need to be resolved, here we summarize the key technological innovations of the whole chain of fermentation process, i.e., real-time detection-dynamic regulation-rational scale-up, through case analysis. In the future, bioprocess design will be guided by a full lifecycle in-silico model integrating cellular physiology (spatiotemporal multiscale metabolic models) and fluid dynamics (CFD models). This will promote computer-aided design and development, accelerate the realization of large-scale intelligent production and serve to open a new era of green biomanufacturing.


Assuntos
Reatores Biológicos , Simulação por Computador , Fermentação , Hidrodinâmica
7.
Chinese Journal of Biotechnology ; (12): 966-979, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878607

RESUMO

Methylotrophic yeasts are considered as promising cell factories for bio-manufacturing due to their several advantages such as tolerance to low pH and high temperature. In particular, their methanol utilization ability may help to establish a methanol biotransformation process, which will expand the substrate resource for bio-refinery and the product portfolio from methanol. This review summarize current progress on engineering methylotrophic yeasts for production of proteins and chemicals, and compare the strengths and weaknesses with the model yeast Saccharomyces cerevisiae. The challenges and possible solutions in metabolic engineering of methylotrophic yeasts are also discussed. With the developing efficient genetic tools and systems biology, the methylotrophic yeasts should play more important roles in future green bio-manufacturing.


Assuntos
Engenharia Metabólica , Metanol , Saccharomyces cerevisiae/genética , Leveduras
8.
Chinese Journal of Biotechnology ; (12): 2767-2778, 2020.
Artigo em Chinês | WPRIM | ID: wpr-878528

RESUMO

Human milk oligosaccharides (HMO) are important immunoactive components found in breast milk. Scientific research proves that HMOs are significantly beneficial for infant health. 2'-fucosyllactose (2'-FL) is the major component of HMO, which obtained growing attentions from food industry. Besides, 3-fucosyllactose (3-FL) is another important fucosyllactose and it has a similar synthetic route comparing to 2'-FL. Thus, research of the two HMO components has interactive effects for each other. Recently, numerous publications are available for 2'-FL and 3-FL. The microbial cell factory is able to massively produce fucosyllactose via an efficient way, which will show considerable influences in dairy industry. In this paper, we review recent studies on 2'-FL and 3-FL, and discuss their prospects according to published literature and patents.


Assuntos
Feminino , Humanos , Lactente , Leite Humano , Oligossacarídeos , Trissacarídeos
9.
Chinese Journal of Biotechnology ; (12): 1801-1805, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771752

RESUMO

Industrial biotechnology promises to make a significant contribution in enabling the sustainable development, and need the solid support from its basic discipline. As the basis of industrial biotechnology, industrial biology is to study the basic laws and mechanisms of biological behavior in industrial environment and to solve the key scientific problems for understanding, designing and constructing the organisms adapted to the application of industrial environment. In order to comprehend the status of industrial biology, we published this special issue to review the progress and trends of industrial biology from the three aspects of industrial protein science, cell science and fermentation science, respectively, for laying the foundation for the development of industrial biotechnology.


Assuntos
Biotecnologia , Fermentação , Microbiologia Industrial
10.
Chinese Journal of Biotechnology ; (12): 1870-1888, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771746

RESUMO

In vitro multi-enzyme molecular machines that follow the designed multi-enzyme pathways, require the rational optimization and adaptation of several purified or partially purified enzyme components, in order to convert certain substrates into target compounds in vitro in an efficient manner. This type of molecular machine is component-based and modularized, so that its design, assembly, and regulation processes are highly flexible. Recently, the advantages of in vitro multi-enzyme molecular machines on the precise control of reaction process and the enhancement of product yield have suggested their great application potential in biomanufacturing. Studies on in vitro multi-enzyme molecular machines have become an important branch of synthetic biology, and are gaining increasing attentions. This article systematically reviews the enzyme component-/module-based construction strategy of in vitro multi-enzyme molecular machines, as well as the research progress on the improvement of compatibility among enzyme components/modules. The current challenges and future prospects of in vitro multi-enzyme molecular machines are also discussed.


Assuntos
Biotecnologia , Enzimas , Química , Metabolismo , Complexos Multienzimáticos , Química , Metabolismo , Biologia Sintética
11.
Chinese Journal of Biotechnology ; (12): 1942-1954, 2019.
Artigo em Chinês | WPRIM | ID: wpr-771741

RESUMO

The chemical manufacturing industry that uses fossil resources as raw materials, consumes non-renewable resources and also causes damage to the ecological environment, stimulating the development of bio-manufacturing with renewable resources as raw materials. Unlike traditional chemical manufacturing, bio-manufacturing uses cells as a "production workshop", and each process in the "workshop" is catalyzed by enzymes. In addition to mild reaction conditions, the "cell factory" has strong plasticity, and can be used to synthesize various target chemicals according to demand adjustment or reconstitution of metabolic pathways. The design process of the "cell factory" follows the following guidelines: 1) Construct an optimal synthetic route from raw materials to products; 2) Balance the metabolic flux of each reaction in the metabolic pathway, so that the metabolic flux of this pathway is much higher than the primary metabolism of the cells; 3) Precursor supply in the pathway should be sufficient, and adjust multiple precursors supply ratio as needed; 4) enzymatic reactions often involve the participation of various cofactors, smooth metabolic pathways need to balance or regenerate various cofactors; 5) Through genetic modification or process improvement to remove metabolic intermediates and products feedback inhibition to achieve higher yields.


Assuntos
Biotecnologia , Células , Metabolismo , Coenzimas , Metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Genética
12.
Chinese Journal of Biotechnology ; (12): 1024-1032, 2018.
Artigo em Chinês | WPRIM | ID: wpr-687713

RESUMO

The development and application of industrial enzymes have penetrated major industrial fields. China faces a major challenge as a large country in applying enzyme but a small one in producing enzyme. Biocatalysis has become an important technology and strategy of industrial development in the world since chemical catalysis encounters the crises from resource, energy and environment. The application of efficient and clean biocatalysis is one of the important ways to realize the sustainable development of chemical industry and to modernize the fermentation industry. From perspective of the industry-university-research cooperation, we reviewed the current status and the future development of enzyme engineering from the aspects of enzyme resources, customization of enzyme molecular machine and cell factory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA